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Abstract—The objective of this research is to study the existence 

of solutions of a fifth order model equation for steady capillary-gravity 

waves over a bump with the Bond number near 1/3. We proved that 

there exist solitary wave solutions of equation (1). 

 

Keywords—Classical fourth-order Runge-Kutta method, Green’s 

function, Solitary wave solution, Steady capillary-gravity wave.  

I. INTRODUCTION 

ROGRESSIVE capillary-gravity waves on an irrotional 

incompressible inviscid fluid of constant density with 

surface tension in a two-dimensional channel of finite depth 

have been studied since nineteen century. Assume that a 

coordinate system moving with the wave at a speed is chosen so 

that in reference to it the wave motion is steady. Let H be the 

depth of water, g the acceleration of gravity, T the coefficient of 

surface tension, and ρ the constant density of the fluid. Then 

there are two nondimensional numbers which are important and 

defined as )/(2 gHcF  , the Froude number, and )/( 2gHT   , 

the Bond number.  

When F is not close to 1, the linear theory of water waves is 

applicable. But when F approaches to 1, the solutions of 

linearized equations of water waves will grow to infinity (Peters 

and Stoker [17]). Therefore for F close to 1 nonlinear effect 

must be taken into account and thus 1F  is a critical value. The 

first study of a solitary wave on water with surface tension is due 

to Korteweg and DeVries [11] after whom the K-dV equation 

with surface tension effect is named. A stationary K-dV 

equation with Bond number not near1 3  can also be formally 

derived by different approaches. However, if is close to 1, the 

formal derivation of the stationary K-dV equation fails. 

Thus 1 3  is also a critical value.  

It becomes apparent that the problems for F near 1 and 

for near1 3 depend on each other and are difficult because 

they are not only strongly nonlinear, but also very delicate. 

Since the full nonlinear equations for the water waves are too 

complicated to study, it is of interest to study model equations. 

In Hunter and Vanden-Broeck’s work [9], a fifth order ordinary 
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differential equation considered as a perturbed stationary K-dV 

equation was obtained with the assumption that
2

21F F  є , 

11 3   є  and є is a small positive parameter. By integrating 

the fifth order ordinary differential equation once and set the 

con-stant of integration to be zero, then the model equation 

becomes 

   
2

2 1

3 1
2 + 0

2 45
xx xxxxF       .                         

The model equation has been studied extensively by many 

authors [1-7,9] and several types of solutions have been found, 

such as periodic solutions [1, 5, 6, 7], solitary wave solutions 

[2-7,9], generalized solitary wave solutions (solitary waves with 

osciallatory tails at infinity) in the parameter region 1 0   and 

2 0F   [1,9], etc. 

We add a bump ( )y b x  at the bottom of the two- 

dimensional ideal fluid flow and then derive a forced model 

equation 

2

2 1

3 1
2 +

2 45
xx xxxxF b                               (1) 

Equation (1) has been studied extensively by Tsai and Guo 

[21-27] and several types of solutions have been found.  

In this paper, we shall prove that there exist solitary wave 

solutions of equation (1). 

II.  DERIVATION OF THE MODEL EQUATION 

We consider the two-dimensional flow of an irrotional 

incompressible inviscid fluid of constant density    with 

surface tension T   in a two-dimensional channel of finite depth. 

A rectangular coordinate system ( ,x  )y
 is chosen such that 

the flow is bounded above by the free surface ( , )y x t     

and below by the rigid horizontal bottom with a bump  

( )y H x    b . 

The governing equations are: 

In , ( )x H x y            b  

  0
x x y y
    

   ,                                     (2) 

at the free surface, y    

      0
t x x y

      

      ,                                (3) 
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x x
t x y

x

T B
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
   

 

 

 



  
   

 
    


           (4) 

at the bottom, ( )y H b x      

0
y x x
   

   b                                  (5) 
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Where ( , , )x y t    is the potential function, B is an arbitrary 

constant, and H is the depth when the bump b  is zero. In order 

to investigate long waves and derive asymptoyic solutions, it is 

conventient to introduce the following dimensionless variables: 

1
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b b

                  (6) 

where M is a positive integer to be chosen later. 

In terms of the nondimensional variables (6), (2)-(5) become: 

In , 1 ( )Mx x y        b  

            0,xx yy                                   (7) 

At the free surface, y  
2 1 0,t x x y                                (8) 

2 2 1 2( )
2

t x y


        3

2

2

2 2
,

2(1 )

xx

x

B

 
 


             (9) 

at the bottom, 1 ( )My x   b  

1 0.M

y x x   b                              (10) 

In (7)-(10), ,  , and are nondimensional parameters 

2

2
, ( ) , .

A H T

H L gH
  






                     (11) 

We seek solutions for periodic water waves of wavelength  , 

and introduce the dimensionless wavelength 

,
L






                                          (12) 

The Froude number F is defined as 

 1
2 0

.
( )

x

c
F dx

gH





                             (13) 

Since we are interested in small amplitude and shallow-water 

waves with near 1
3 , in (7)-(10), we take  

2 ,  є є.                                  (14) 

and expand , ,   , and B as 
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                     (15) 

Substituting (14) and (15) into (7)-(10), taking M = 4 in (10), 

and expanding at the boundary condition 0y  and 1y   , we 

obtain in ,x    1 y  0  

2 3

0 1 2 0 1( ( )) (
xx xx xx yy yy

O        є є є є є 2 3

2 ( )) 0,
yy

O  є є   (16) 

at 0y  , 
2 2

0 1( ( ))t t O  є є є  
2 3

2 0 1 2
02

( )
 {( ( ,0, ) ( ))}

x

B B B O
x t O

  
  

є є є
є є

є
 

2 3

0 1 2( ( ))x x x O    є є є  
1 2 2

0 0 1 0 {( ( ,0, ) ( ( )) ( ,0, )y yyx t O x t      є є є є  
2 2

1 0 1 1 ( ( ,0, ) ( ( )) ( ,0, )y yyx t O x t      є є є є    
4 2 2 3

2 3( ))  ( ( ,0, ) ( )) ( ( ,0, )y yO x t O x t    є є є є  
2 4( )) ( ))}O O є є = 0,                    (17) 

2 2

0 1( ( ,0, ) ( ,0, ) ( ))t tx t x t O  є є є  
2 32

0 1 2

2

( )
 {{

2

B B B O  


є є єє

є
 

2

0 0 0 1 ( ( ,0, ) ( ,0, )) ( ,0, )x xy xx t x t x t     є є  
2 3 2 1 2

2 0 0 1( ,0, ) ( )}  {( )x y yy yx t O       є є є є є  
2 3 2 2 3

2 0 1 2( )} } ( ( ))y O O        є є є є є  

2 3 2

1 2 0 1 2

1
 ( ( ))(

3
xx xx xxO         є є є є є є  

3 10( ))(1 ( ))O O є є  
2 3 4 5 2

0 1 2 3 4

2

( ( ))
 ,

2

B B B B B O    


є є є є є

є
   (18) 

at 1y    

2

0 1 2( ( , 1, ) ( , 1, ) ( , 1, )y y yx t x t x t      є є

2 3
3 4 5 0 1 2

3 2

( )
( , 1, ) ( ))  ( )y

B B B O
x t O

  
   

є є є
є є є

є
  

    0 ( , 1, ) ( ))x xx t O   bє = 0.                    (19) 

From (16) to (19), we have 

1( )O є : 

0 ( ,0, ) 0.y x t                                 (20) 

(1)O : 

0 ( , , ) 0,yy x y t                                (21) 

0 0 1 ( ,0, ) 0,x yB x t                            (22) 

0 0 0( ,0, ) 0,xB x t                             (23) 

0 ( , 1, ) 0.y x t                               (24) 

From (21) and by (22) or (24), it follows that 

0 0 00, ( , , ) ( , ).y x y t x t                      (25) 

( )O є : 

0 1( , ) ( , , ) 0,xx yyx t x y t                       (26) 

0 1 1 0 2 ( ,0, ) 0,x x yB B x t                       (27) 

0 1 1 0( ,0, ) ( ,0, )x xB x t B x t 
2
0 ( ,0, ) 1

1 02 3
0,y x t

xx


          (28) 
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     1 ( , 1, ) 0.y x t                                (29) 

From (26) and by (29), we found that 

1 0( , , ) ( , )( 1),y xxx y t x t y                          (30) 

and 
2

1 0 1( , , ) ( , )( ) ( , ),
2

x xxx x

y
x y t x t y R x t                (31) 

From (22), (23), and by (30), we obtain 

0 1,B                                           (32) 

0 0.x                                        (33) 

From (28) and by (25), (31), and (32), it follows that 

1 0 1 1 0

1
( ,0, )

3
xx xxx x xx t B                      (34) 

1 ( , ).xxR x t                               (35) 

2( )O є : 

1 2( , , ) ( , , ) 0,xx yyx y t x y t                    (36) 

0 0 2 1 1 2 0 0( )t x x x xB B B        0 1 3 0 at 0,yy y y         (37) 

   
2
0 1

0 2 1 1 2 0 2 12 3t x x xxB B


           1 0 0 at 0,xx y      (38)

                 2 ( , 1, ) 0.y x t                             (39) 

From (36), (39) and by (31), we found that 

2 0 1

1
( , ) ( , ) ( , ),

3
xxxx xxR x t x t R x t                    (40) 

3 2

2 0( , , ) ( , )( )
6 2 3

y xxxx

y y y
x y t x t    2 ( , )( 1),R x t y        (41) 

and 
4 3 2

2 0( , , ) ( , )( )
24 6 6

xxxx

y y y
x y t x t   

2

2 3( , )( ) ( , )
2

y
R x t y R x t    

           (42) 

From (27) and by (32),(41) 

2 1 1 0( , ) .x xR x t B                        (43) 

From (37) and by (30),(32) ,(33), 

2 0 1 1 2 0 0 3( 2 ) ( ,0, )x t x x yB B x t                    (44) 

Differentiating (38) about x and by (33) , (35) , (42) 

2 0 3 1 1 2 0 0( )x t xx xx xR B R B       
1 1 0

1
.

3
xxx xxx      (45) 

By (34), (35), (40), and (43)  

1 0.B                                           (46) 

By (44), (45), and (46) 

1 0 2 0 0 0

1
2 2 3

3
xxx t x xB        1 0 3 3 ( ,0, )xxx xx yR x t      

  (47) 

( )O 3є : 

2 3( , , ) ( , , ) 0,xx yyx y t x y t                    (48) 

3 0( , 1, ) .y xx t B b                          (49) 

From (48), (49) and by (42), we obtain 

3 0 2

1 1
( , 1, ) ( , ) ( , )

45 3
y xxxxxx xxx t x t R x t    3 3( , ) ( ,0, )xx yR x t x t   

            (50) 

By (32), (33), (43), (46), and (50), we have 

0 2 0 0 02 2 3t x xB    
1 0 0

1
.

45
xxx xxxxx x     b        (51) 

The Froude number F is defined and expanded as  

( )F F O   0 1 2

2 3єF є F є  
2 32

0 1 2
02

( )
( ( ))

0
x

B B B O
O dx






  
  

є є єє
є

є
 

0 2 0
0

( ).xB B dx O





    
2

2 3

1

є
єB є є                    (52) 

By (33) and the mean value of periodic solution over a period is 

zero, we found that 

0 0
0 0

0xdx dx
 

     . 

If 0 is a solitary wave solution with the properity that 

0 0
0 0

xdx dx 
 

     ,                        (53) 

then, with  , the term 

0
0

1
xdx




 

 

in (52) will be zero. We shall see that all the solitary wave 

solutions discovered in the following chapters will satisfy (53). 

Therefore, we have 

0 0B F , 1 1B F , 2 2B F . 

and then (51) becomes 

0 2 0 0 0 1 0 0

1
2 2 3

45
t x x xxx xxxxx xF          = b .      (54) 

Next, we assume 0 0t  in equation (54), integrate (54) once and 

set the constant of integration to be zero, then we have the 

following model equation 

2

2 0 0 1 0 0

3 1
2

2 45
x xx xxxxF       = b .              (55) 

In the following sections, we shall use for 0 in equation (55), 

that is, 

2

2 1

3 1
2

2 45
xx xxxxF        b .               (56) 

and disscuss the solutions of the model equation (56). 

III. PROBLEM FORMULATION 

We follow Zufiria [28] to construct a Hamiltonian 

associated to (1). 

When 0b , we rewrite (1) as 

2

1 2

135
45 90 0

2
xxxx xx F        .                   (57) 

We multiply x to (57) and integrate the resulting equation, 

then equation (57) has first integral as 
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2 2 2 3

2 1

1 45 45
45

2 2 2
x x xxx x xH F           ,            (58) 

where H is a constant. Introducing the change of variables 

1 1 1

2 2

45xxx x,

xx x ,

q , p

q , p

   

 

   


  
 

then (58) becomes 

   2 2

1 2 1 2 2 1 2

1
, =45

2
H q q , p , p F q q 2 3

1 2 1 2 1

45 45

2 2
p p p q   ,      (59) 

and we have 

( ) ( ) ( , )z

dz
J H z Az g z f z

dx
     ,                (60) 

where
2

1 2( , )F  R , 

1

2 4

1

2

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

q

q
z , J

p

p

   
   
     
   
   

  

R ,                (61) 

and 

      
1

2135
2 12

0 0 0 1 0

0 0 1 45 0
( ) =

90 0 0 0

0 1 0 0 0

A , g z
F q



   
   

 
   
   
   

   

.            (62) 

 Therefore (59) is a two degree of freedom Hamiltonian with 

two parameters 1 and 2F . Because different parameters 1 2( , )F  

in (59) give rise to different eigenvalues   for the linearized 

system of (60) at the origin, we divide the parameter plane 

1 2( , )F  into following nine cases  

Case 0 1 2( 0 0): =0,0,0,0,F   . 

Case 1 1 2( 0): = , ; , 0,F r wi r w     R . 

Case 2 1 2( 0 0): =0,0, ; 0,F wi w     . 

Case 3 
2

1 2 1 2( 0 0  (45 ) 360 0): ,F , F      

1 2 1 2, ; 0w i w i w w      . 

Case 4 
2

1 2 1 2( 0 0  (45 ) 360 0):,F , F      

, ; 0wi wi w      

Case 5 
2

1 2 1 2( 0, (45 ) 360 0):,F F    R  

= ; , 0a bi a b     

Case 6 
2

1 2 1 2( 0 0, (45 ) 360 0):,F F   >  

= , ; 0r r r     

Case 7 
2

1 2 1 2( 0 0, (45 ) 360 0):,F F   >  

1 2 1 2= , ; 0r r r r      

Case 8 1 2( 0 0): =0 0 ; 0,F , , r r   > . 

We rewrite (1) as follows, 

2

1 2

3
45 90 45( ( )) ) ,

2
xxxx xx F x f         b           (63) 

IV. SOLITARY WAVE SOLUTIONS  

We consider the problem 

2

1 2

135
45 90 ( ) ,

2
xxxx xx F x x           b        (64) 

( ) ( ) 0                                   (65) 

where ( ) 45 ( )x x b b is even. 

Since we are interested in even solutions, we shall only 

consider [0 )x , hereafter. 

Case 7: 
2

1 2 10, , ( 45 8,0)F       

First, we change (64) and (65) to an integral equation by 

constructing the Green’s function ( , )G x s  of 

1 245 90 0xxxx xx F      ,     0 x              (66) 

(0) (0) ( ) ( ) 0x xxx x         .                       (67) 

and obtain 

1 1| | | |

2 2

1 1 2

1
( , )  ( )

2 ( )

r x s r x s
G x s e e

r r r

   
  


   

2 2| | | |

2 2

2 1 2

1
( )

2 ( )

r x s r x s
e e

r r r

   
 


    (68) 

where 

2

1 1 1 2(45 (45 ) 360 ) 2,r F        

                2

2 1 1 2(45 (45 ) 360 ) 2,r F     1 2 0r r  .    (69) 

 

Hence (66) and (67) is equivalent to 

2

1 2
0

135
( ) ( , )( ( ) ( )) ( ) ( )

2
x G x s s s ds I x I x 



    b      (70) 

where 

1
0

( ) ( , ) ( ) ,I x G x s s ds


  b  

2

2
0

135
( ) ( , )( ( ))

2
I x G x s s ds



                 (71) 

We denote by mH the Banach space of even functions 

( , )f   mC  with the norm 
 

0

|| || sup ( )
m

k

H d
k m

f C f x
 

                      (72) 

where 
( ) ( )

0

( ) sup ( | ( ) |)k dx k

d
x

C f x e f x
 

 , 

and d is a constant to be specified later. 

Theorem 1  If ( )g s  mH and
0

( ) ( , ) ( )Y x G x s g s


  ds, 

then ( ) m+4Y x H and 

4 7|| || || ( ) ||
m mH HY C g x

 ,       

7 2( )C C r d   

Hereafter we shall use C as a generic positive constant, which is 

independent of Y and g 

 

Proof: From (64), it is straigthforward to check 

that ( ) m+4Y x H when ( ) .g s  mH Next we show that 
( )

0 4 0

sup ( sup | ( )|) || ( )||
m

dx k

H
k m x

e Y x C g x
    

  

Here we only consider the case 0m  . The proof for other cases 

are similar. From (68), we have 

1 2 3 4( ) ( ) ( ) ( ) ( )Y x Y x Y x Y x Y x    5 6 7 8( ) ( ) ( ) ( )Y x Y x Y x Y x     
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where 

1 ( )

1 2 20
1 1 2

1
( ) ( )

2 ( )

x
r x s

Y x e g s ds
r r r

 


 , 

1 ( )

2 2 20
1 1 2

1
( ) ( )

2 ( )

x
r x s

Y x e g s ds
r r r

 


 ,

2 ( )

3 2 20
2 1 2

1
( ) ( )

2 ( )

x
r x s

Y x e g s ds
r r r

 


 ,

2 ( )

4 2 20
2 1 2

1
( ) ( )

2 ( )

x
r x s

Y x e g s ds
r r r

 


 , 

1 ( )

5 2 2

1 1 2

1
( ) ( )

2 ( )

r s x

x
Y x e g s ds

r r r


 


 , 

1 ( )

6 2 2

1 1 2

1
( ) ( )

2 ( )

r x s

x
Y x e g s ds

r r r


 


 , 

2 ( )

7 2 2

2 1 2

1
( ) ( )

2 ( )

r s x

x
Y x e g s ds

r r r


 


 , 

2 ( )

8 2 2

2 1 2

1
( ) ( )

2 ( )

r x s

x
Y x e g s ds

r r r


 


 , 

Estimating 1Y , we have 

1 1

1 2 2 0
1 1 2

1
  ( )

2 ( )

x
r x r s

Y e e g s ds
r r r




   

1 1( )

0 0
 

x
r x r s ds

H
Ce g e ds

 
   

0

1

 || ||
( )

dx

H

C
g e

r d




 

Hence
01 1( ) || || ( )Hd

C Y x C g r d  and it follows that 

0 01 7|| || || ||H HY C g  , if we choose 2.d r  2 8, ,Y Y  can be 

estimated in the same manner and we obtain
2| |d r . 

Let 

 7 ,  4m mS H H M m     ,           (73) 

where M is positive and will be specified later. We also define 

an operator  

    2

7
0

135
( )( ) , ( ( )) .

2
Q x G x s s s ds 



  b      (74) 

We want to show that the operator 7Q maps 7S into 7S and it is a 

contraction. Then, (64) subject to (65) has a solitary wave 

solution. 

Theorem 2 Assume 2

4,  0mb H d r    with M and 

4
|| ||

mHb


satisfying (77), (78), and (79), then the operator 

7Q maps 7S into 7S . 

Proof: Assume 7S and by Theorem 1, 

  
41 7

0
|| ( ) || || ( , ) ( ) || || ||

m m mH H HI x G x s b s ds C b




  .        (75) 

Before estimating 2|| ( ) ||
mHI x , we first show that  

2 1 2|| || 2
m

m

H M  .  Since  || ||
mH M  , we have 

( )| ( ) |dx ke x M  , 

for k = 0, 1,…,m and 0 x  , If we choose 
20 d r  , then 

 ( ) 2 2| ( ) || ( ) |
kdx j dxe x x e M M    ,  

0 j k m   , j, k = 0, 1,…, m, 

and it follows that 
2

4mH   and 
4

2 3 2|| || 2
m

m

H M


 . Now, 

2

2
0

135
|| ( ) || || ( , ) ( ) ||

2m mH HI x G x s s ds


   4

2

7

135
|| ||

2 mHC 




4 2

7135(2 )m C M                         (76) 

By (75) and (76), we have 

7 1 2|| || || ||  || ||
m m mH H HQ I I 

4

4 2

7 7|| || 135(2 )
m

m

HC b C M


  . 

In order to have 7|| ||
mHQ M , we need to choose 

M M M   ,                             (77) 

where 

1 2

1

1 1 4

2
,

M M

M
M

    
4

4

1 7 2 7135(2 ) , || || .
m

m

HM C M C b


   (78) 

Also from 1 21 4 0M M  , we obtain 

4 2 2

7

1
|| || .

135(2 )mH m
b

C 
                        (79) 

Furthermore, we have 

Theorem 3 By following the same assumptions in Lemma 5, if 

(80) and (81) hold, then 7 7:Q S   7S is a contraction. 

Proof: Assume 1 2 7, S   , 

7 1 7 2|| ( ) ( ) ||
mHQ Q   

2

1
0

135
 || ( , )( ( ) ( ))

2
G x s s s ds



  b  

1

2

2
0

135
( , )( ( ) ( )) ||

2 mHG x s s s ds


  b  

2 2

1 2
0

135
 || ( , )( ( ) ( )) ||

2 mHG x s s s ds 


   

4

2 2

1 2

135
 || ||

2 mH 


   

2 2

1 2

135
 || ||

2 mH    

1 2 135(2 ) || ||
m

m

HM     

For choosing135(2 ) 1m M  and having (77) satisfied, we need 

1
{ , }.

135(2 )m
M min M                          (80) 

From (77) and (80), we also need 

1
,

135(2 )m
M        

that is, 

7
1 2

2

1 1 4 .
8 8( )

C C
M M

r d
   


                (81) 

The inequality (81) will hold if we choose 

2 2

1 2

{0, } .
8(1 1 4 )

C
max r d r

M M
  

 
          (82) 

Since 7 7 7:Q S S is a contraction, and it follows that there 

exists a fixed point 0 is 7S such that 

0 7 0( ).Q   

For Case 5 and Case 6, the proofs of the existence of a 

solitary wave solution of equation (1) are similar to Case 7. 
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Thus we only give a brief discussion for Case 5 and Case 6 and 

the associated Green’s function. 

Case 5: 

Here
245

2 18
F   , the Green’s function is given by 

| |

2 2

1
( , ) ( ( | | )

4

a x sG x s cos b x s e
ab a b

    


 

| |( | | ) ),a x scos b x s e               (83) 

where 0 x  , 

1 2(45 360 ) 2>0,a F    

1 2( 45 360 ) 2 0b F     , 

2 2
( ) ,

a
sin

a b
 


 

2 2
( )

b
cos

a b
 


. 

Case 6: 

Here in this case, 
245

2 1 18
, 0F     , the Green’s function 

becomes 

| |

3

1
( , ) ((1 | |)

4

r x sG x s r x s e
r

     | |(1 | |) ),r x sr x s e     (84) 

where 145

2
r


 , and ( )Y x in Theorem 1  becomes 

1 2 3 4( ) ( ) ( ) ( ) ( )Y x Y x Y x Y x Y x     

5 6 7 8( ) ( ) ( ) ( )Y x Y x Y x Y x     

where 

 3

( )1
1 4 0
( ) ( ) ,

x
r x s

r
Y x e g s ds    

3

( )1
2 4 0
( ) ( ) ,

x
r x s

r
Y x e g s ds    

3

( )1
3 4 0
( ) ( ) ( ) ,

x
r x s

r
Y x r x s e g s ds    

3

( )1
4 4 0
( ) ( ) ( ) ,

x
r x s

r
Y x r x s e g s ds    

3

( )1
5 4
( ) ( ) ,r s x

r x
Y x e g s ds


    

3

( )1
6 4
( ) ( ) ,r x s

r x
Y x e g s ds


    

3

( )1
7 4
( ) ( ) ( ) ,r s x

r x
Y x r s x e g s ds


    

3

( )1
8 4
( ) ( ) ( ) .r x s

r x
Y x r x s e g s ds


    

Estimating 3| |Y , we have 

3 2 0

1
| | ( ) | ( ) |

4

x
rx rsY e x s e g s ds

r

   

0

( )

1
0

|| || ( )
x

rx r d s

HC e g x s e ds    

01 2

1
|| || ( ( (1 ( ) ))

( )

dx rx

HC g e e r d x
d r

    


 

0
 || || .dx

HC g e  

Hence
03( ) || ||Hd

C Y x C g and it follows that
03|| ||HY  

0
|| ||HC g , 

if we choose .d r  

7 2

1
| | ( ) | ( ) |

4

rx rs

x
Y e s x e g s ds

r


   

0

( )

1 || || ( )rx r d s

H
x

C e g s x e ds


    

0

1

2
 || ||
( )

dx

H

C
g e

d r




 

0
 || || dx

HC g e  

Hence
07 ( ) || ||Hd

C Y x C g , and it follows that
07|| ||HY  

0
|| ||HC g  if we choose d r  . Other iY , i = 1, 2, 4 to 6, and 8 

can be estimated in the same manner and we obtain | | .d r  

V. NUMERICAL RESULTS  

In this section, we shall give solitary wave solutions of 

equation (1) numerically by using classical fourth-order 

Runge-Kutta method. 

 

 

 

Figure 1: A solitary solution of equation (1) for Case 5 with 

6,1 21  F , and compact bump ))1/(1exp()( 2  xxb  on 

interval )1,1( . 

 

 

 

Figure 2: A solitary solution of equation (1) for Case 6 with 

8/45,1 21  F , and compact bump ))1/(1exp()( 2  xxb  on 

interval )1,1( . 
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Figure 3: A solitary solution of equation (1) for Case 7 with 

793.4169/810,1 21  F , and compact bump 

))1/(1exp()( 2  xxb  on interval )1,1( . 

VI. CONCLUSION 

We showed the existence of solitary wave solutions of a fifth 

order model equation for steady capillary-gravity waves over a 

bump with the Bond number near 1/3.  
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